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Abstract— Obesity is one of the major risk factors for non-

communicable diseases. Developing an early obese screening 

method is crucial to facilitate the early treatment of obese 

patients. In this study, we proposed a stand-alone mobile 

application for early diagnosis of obesity based on Convolution 

Neural Network (CNN) classifier model. The proposed CNN 

model was developed based on MobileNetV2 by modifying the 

fully connected layers. We trained the proposed model with the 

obese thermogram dataset through the transfer learning method 

and compared the classification performances with pre-trained 

models. The testing results show that the proposed model 

achieved an accuracy of 87.50%, a specificity of 100 %, and a 

sensitivity of 75.00 %. The proposed model demonstrated an 

optimal fit learning with 2.5 million learning parameters, a 

computation cost of 0.613 GFLOPs, and a size of 9.8 MB. The 

proposed model has been deployed and tested into the thermal 

camera smartphone CAT S62 Pro to do an early diagnosis of 

obesity. 
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I.  INTRODUCTION 

According to World Health Organization (WHO), obesity 
and overweight are defined as abnormal or excessive 
accumulation of fat that may impair health [1]. Obesity is a 
major risk factor for many non-communicable diseases, such as 
diabetes, heart disease, stroke, and cancers [2]. The prevalence 
of obesity has been reported to be increased between 2000 to 
2016 across all WHO regions [3]. The global prevalence of 
obese adults in 2016 is estimated at 13.1% and ranged from 
4.7% in South East Asia Region, 6.4% in Western Pacific 
Region, 10.6% in African Region, 20.8 in Eastern 
Mediterranean Region, 23.3% in Europe Region, to  28.6% in 
American Region [3]. While in Indonesia, the prevalence of 
obese adults, according to WHO reports was estimated at 6.9 % 
in 2016  [3] and is estimated at 23.1 % in 2018, according to 
study of Harbuwono et al. [4]. 

Therefore, it is crucial to look for early prevention of 
obesity using early detection techniques to reduce the 
prevalence of obesity. There are several methods to evaluate 
obesity, such as: Body Mass Index (BMI) [3], [5], Bio-
electrical Impedance Analyzer (BIA) [6], [7], Dual X-ray 
Absorptiometry (DXA) [7], [8], Computed Tomography Scan 
(CT-Scan) [9], and Magnetic Resonance Imaging (MRI) [10]. 
BMI is the most common method to evaluate obesity by 
calculating a patient’s weight and height, but it does not 
linearly represent the body fat percentages and leads to 
inaccuracy of self-reported results [11], [12]. BIA is a fast, 
low-cost, and easy-to-operate technique by measuring human 
body compositions, but it suffers a limitation of poor accuracy 
in estimating individual body fat [6]–[8]. DXA, CT-Scan, and 
MRI methods are commonly used to visualize and quantized 
subcutaneous and visceral fat in the human body, but these 
methods require expensive equipment and trained technicians 
[7], [8], [10], [13]. 

Infrared Thermography (IRT) or Thermal Imaging method 
is a non-invasive, low-cost, and easy-to-use method that could 
be used to evaluate obesity by assessing Brown Adipose Tissue 
(BAT) [14], [15]. BAT is a thermogenic tissue that has a role in 
controlling body weight by producing energy in the form of 
heat [16], [17]. Several studies have reported a significant 
temperature difference between the BAT activation of obese 
and lean/ normal patients, especially in the supraclavicular and 
abdomen region [16], [18]–[20]. Through the thermal imaging 
technique, the infrared energy emitted from a human’s BAT is 
converted into temperature numbers and visualized into 
thermal images or thermograms [21], [22]. 

The temperature features of the thermogram could be 
detected by an Artificial Intelligence algorithm such as 
machine learning to make an early diagnosis of obesity. The 
previous study by Rashmi et al. implemented a machine 
learning algorithm of Support Vector Machine (SVM), Naïve 
Bayes, and Random Forest classifier in classifying obese and 
normal thermograms [23]. However, the machine learning 
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Fig.1 The Workflow of Model Development and Deployment 

algorithm requires several steps of the feature extraction 
process, different from the deep learning algorithm, which is 
not required to do the feature extraction process manually due 
to its deep feature extraction process from multiple convolution 
layers [24]. Therefore, the study of Umapathy et al. has 
implemented a deep learning Convolutional Neural Network 
(CNN) algorithm for obesity diagnosis [25]. However, the 
study focused on building the CNN model for Computer Aided 
Diagnosis (CAD), which is more suitable for the physician's 
obesity diagnosis screening system. 

So far, we have found no study of implementing deep 
learning CNN on a mobile application for obese early detection 
yet. An early obesity diagnosis system based on a mobile 
application is required so it can be used by common people and 
not limited to health facilities or physicians. The mobile 
application inference model location is recommended to be 
designed on local mobile devices rather than designed on cloud 
server devices [26]. By localizing the inference tasks (i.e., 
prediction and classification tasks) on a mobile device, the 
users could use the mobile applications even in areas with poor 
internet connection [27]. 

In this study, we aim to develop a stand-alone mobile 
application for an early diagnosis of obesity. We developed the 
diagnosis algorithm based on the CNN model that can classify 
obese and normal thermograms through the transfer learning 
method. Then we embedded the proposed CNN model into the 
thermal camera smartphone: CAT S62 Pro in the android 
operating system mobile application. 

Therefore, the contributions of this paper are given as 
follows: 

1. It proposes a non-invasive and efficient method to 
evaluate obesity through thermal imaging and deep 
learning. 

2. It proposes a mobile application for obese 
thermogram classification. 

3. It proposes a high-accuracy and lightweight CNN 
model based on MobileNetV2. 

4. It evaluated the proposed model performances with 
pre-trained models regarding classification 
performance, computation cost, and model size. 

The rest of this paper is organized as follows. Section 2 
describes the materials and method used to construct the 
proposed CNN model and compares it with other pre-trained 

models. This section also explained the dataset and the tuned 
hyper-parameters in the training and testing process. Section 3 
describes the testing results and discusses the proposed model’s 
performances. While section 4 concludes this study and 
provides some future works. 

II. MATERIAL AND METHOD 

Fig 1 shows the workflow of model development and 
deployment. Obese thermal images dataset from images 
acquisition procedures were augmented and fed into the CNN 
model. The CNN model was built and trained through a 
transfer learning procedure. Then the model is deployed and 
embedded into a mobile application. 

A. Dataset 

The obese dataset used in this study was acquired from the 
thermal image acquisition procedure, as explained in our 
previous study [28]. However, we increased the dataset 
quantity by capturing additional images with the thermal 
camera: FLIR E95. The thermograms were captured from five 
body regions: supraclavicular, abdomen, forearm, shank, and 
palm region, as shown in Fig. 2. There are 200 Thermograms 
labeled as the normal class (BMI lower than 25 kg/m2) and 200 
thermograms labeled as the obese class (BMI larger or equal to 
25 kg/m2). Then we started grouping the dataset into 2 groups, 
one for training and the other for testing. We took 180 
thermograms of each class for the training dataset and took the 
remaining 20 of each class for the testing dataset. Thus, in total, 
we used 360 (90%) thermograms for the training dataset and 
the remaining 40 (10%) thermograms for the testing dataset. 

To reduce overfitting and to optimize the CNN model in 
learning image modality features, augmentation is applied to 
the training dataset [29], [30]. Augmentation is a data-space 
solution to the problem of the small dataset by enhancing the 
size and variety of the training dataset [24]. We augmented the 
training dataset through the image data generator function 
provided by the TensorFlow Keras library. The augmentation 
metrics are as follows: image rotation of 10 degrees, width 
shifting range of 0.1, height shifting range of 0.1, shear range 
of 0.1, zoom range of 0.2, enable horizontal flip and batch size 
of 32. Meanwhile, the augmentation was not applied to the 
testing dataset. After the dataset is augmented, the training and 
testing dataset is ready to be fed as input images for CNN 
model training and testing in the model development step. 



 

(a) 
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Fig.2 Thermograms of Supraclavicular, Abdomen, Forearm, Shank, and Palm regions (a) Normal Thermogram (b) Obese 
Thermogram 

TABLE I. The Proposed CNN Architectures 

CNN Architectures Input Size Output Size Architecture Layers 

Input Layer 464 × 368 × 3 224 × 224 × 3 Thermal Images 

Bottom Layer 224 × 224 × 3 7 × 7 × 1280 MobileNetV2 baseline 

Pool Layer 7 × 7 × 1280 1280 Global Average Pooling Layer 

Top Layer 
1280 256 Fully Connected Layer [256, ReLU] 

256 2 Fully Connected Layer [2, Softmax] 

 

B. Model Development 

In this study, the CNN model is developed by applying the 
transfer learning method. The transfer learning method was 
used to apply the knowledge gained from solving the 
classification task of the larger general dataset to solving a 
different classification task of a smaller dataset [30]. Since the 
obese thermograms used in this study were limited, we applied 
transfer learning on the pre-trained model and trained it with an 
obese thermogram dataset. We modified the pre-trained 
architectures to achieve the highest performance by adding 
additional fully connected layers. Then we fine-tuned the 
developed CNN model to achieve the best performances in 
training and testing. 

1) Pre-Trained CNN Model 
In the image classification domain, Convolutional Neural 

Network (CNN) models were recently shown significant 
classification performances through the transfer learning 
method on pre-trained CNN models [31], [32]. These pre-
trained models were trained on million images of the ImageNet 
dataset to classify common image classification problems and 
then could be fine-tuned to a specific classification task. 
Applying transfer learning on pre-trained models could shorten 
and optimize the time required for training the model to 
achieve better learning performances. 

In this study, pre-trained CNN models MobileNetV1 [33] 
and MobileNetV2 [34] were trained with an obese 
thermograms dataset through the transfer learning method by 
modifying its last fully connected output from 1000 class into 2 
class outputs. We chose MobileNetV1 and MobileNetV2 

models due to their depthwise separated filters, which 
drastically reduced computation and model size [33]. Those 
models were designed to match the design requirements for 
mobile and embedded vision applications with limited 
computation resources and memory. 

2) Proposed Modified CNN Model 
As the fine tuning of pre-trained model had not yet 

achieved the optimum performances, then the pre-trained 
architecture was modified by adding several additional layers. 
The increased layers were added to improve the model’s 
performance in generalized features better. The procedure was 
performed for both pre-trained models: MobileNetV1 and 
MobileNetV2. However, the modified MobileNetV2 was 
achieved better performances than modified MobileNetV1, 
which is will explained later at next section. Therefore, the 
modified MobileNetV2 is considered as the proposed modified 
CNN. 

The proposed CNN architecture was shown in Table 1.  
The input images from thermal camera were resized first into 
size of 224 × 224 × 3 (RGB) at the input layer. The bottom 
layers of the pre-trained MobileNetV2 were imported, as well 
with its filter’s weight. Then the input images were convoluted 
in the bottom layers into size of 7 × 7 × 1280 and pooled by 
global average pooling layer into one dimension matrix size of 
1. Then followed with fully connected layers with 256 nodes 
followed with Rectifier Linear Units (ReLU) activation 
function. The last fully connected was added with size of 2 
nodes followed with softmax activation function to classifying 
the output into 2 classes of normal or obese. 



 

Fig.3 The Overall Application Flow 
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3) Training and Testing 
All the models were trained and tested on Google Cloud 

Engine Virtual Machine (GCE VM) with GPU: Tesla P-100 
and RAM of 16 GB. The models were constructed and 
developed on an open-source framework: TensorFlow 2.0 and 
Keras library. The training and testing procedures were 
executed in 100 epochs and a batch size of 32. The prediction 
loss was calculated with a categorical cross-entropy loss 
function. Adam optimizer was used to optimize the learning 
performances to optimal accuracy with a constant initial 
learning rate of 0.0001. 

To evaluate the model performances in classifying obese 
and normal thermograms, we measure the training and testing 
metrics of accuracy, specificity, and sensitivity shown in 
mathematical equations (1)-(3). In this study, the positive value 
is described as obese class images, while the negative value is 
described as normal class images. True Positive (TP) is defined 
as correctly predicted images of an obese class. While True 
Negative (TN) is defined as correctly predicted images as a 
normal class. False Positive (FP) is defined as wrongly 
predicted images as an obese class, and False Negative (FP) is 
defined as wrongly predicted images as a normal class. 

C. Model Deployment 

After developing a high performances model, we 
implement the proposed CNN model into mobile devices. The 
model was deployed as a stand-alone mobile application which 
is not required an internet connection to perform obese 
diagnose. The proposed model was first converted into a 
TensorFlow lite format extension and then embedded into a 
mobile application. In this study, we implement the CNN 
model into a thermal camera smartphone CAT S62 Pro with an 
android operating system. The mobile application user 
interface (UI) was designed with android studio IDE in dart 
programming language and flutter framework. 

The mobile application's workflow is shown in Fig 3. The 
application starts with displaying a home page with 2 buttons: 
Capture and Gallery. When the user presses the capture button, 
the application will open "My FLIR Pro" application and let 
the user captures thermograms with the thermal camera. When 
the gallery button is pressed, the application will let the user 
choose which photos to be fed into the CNN model to classify 
obese and normal thermograms. When an image is chosen, the 
application will load the CNN model and show the prediction 
value in probability values from 0 to 1. If the obese value is 
higher than the normal value, the application will show the 
results to the user and vice versa. 

III. RESULTS AND DISCUSSION 

A. Training and Testing Results 

The testing results are recorded and summarized in Table. 
2. We comparing the performances of the pre-trained CNN 
models, the modified CNN models and snekhalatha et al. [25] 
CNN models from previous study. In classification 
performances, the results showed that the proposed model 



TABLE II. Testing Results 

Model Accuracy Specificity Sensitivity 
Learning 

Parameter 
GFLOPs 

Model Size 

(MB) 

MobileNetV1 0.850 0.950 0.750 3,230,914 1.15 12.325 

Modified MobileNetV1 0.875 1.000 0.750 3,491,778 1.15 13.320 

MobileNetV2 0.725 0.900 0.550 2,260,546 0.613 8.623 

Proposed Modified MobileNetV2 0.875 1.000 0.750 2,586,434 0.613 9.866 

Snekhalatha et al. [25] 0.825 0.850 0.800 36,327,690 3.03 138.58 

 

  

(a) (b) 

Fig.4 Proposed Model Learning Performances Between Training and Testing (a) Loss (b) Accuracy 

     

(a) (b) (c) (d) (e) 

Fig.5 Mobile Application User Interface (a) Home page (b) Thermal Camera Application (c) Choosing Image in Gallery 
(d) Detection Result of Normal Thermogram (e) Detection Result of Obese Thermogram 

achieved the best accuracy of 87.5 %, specificity of 100 %, and 
sensitivity of 75.00 %. The modified MobileNetV1 model also 
achieved the same classification performance as the proposed 
model. However, the proposed model has a smaller complexity 
than the modified MobileNetV1 model. The proposed model 
has 2.5 million learning parameters, a computation cost of 
0.613 GFLOPs, and a model size of 9.8 MB. The proposed 
model has a bigger complexity size than its baseline 
MobileNetV2 model due to additional layers at the fully 
connected layers, resulting in a comparable trade-off between 
classification performances and complexity size. 

Compared with the previous CNN model of Snekhalatha et 
al. [25] study, the proposed model shows better accuracy and 
specificity but poorer sensitivity. However, the proposed model 
achieved a significantly smaller complexity in total parameters, 
FLOPs, and model size than the snekhalatha [25] model. The 
previous study [25] proposed customized CNN architectures 
consisting of four conventional convolution layers followed by 
multiple dense layers, which increase the model’s complexity 
and are more suitable for embedded Computer-Aided 
Diagnosis (CAD) systems rather than smartphone devices. 

The proposed model’s learning performances of loss and 
accuracy are shown in Fig 4. As shown in Fig. 4 (a), there is a 



gap between the train and test loss. It’s indicated that the model 
achieved a smaller loss in classifying training images than 
testing images. However, the gap started to bigger after the 
75th epoch, and we stopped the training at the 100th epoch to 
prevent overfitting. Then the current fine-tuning attempt is 
considered in the good fitting, which is tuned between 
underfitting and overfitting conditions. While on Fig. 4 (b) also 
shows the gap between the training and testing accuracy of the 
proposed model. However, the learning performances show 
acceptable performance in the final accuracy results in the 
100th epoch, which achieved the best accuracy than other 
models. 

As a summary of the testing results, the proposed model 
has achieved a balanced trade-off between its classification 
performance (accuracy, specificity, sensitivity) and complexity 
(computation cost, learning parameters, model size). Even 
though the proposed model did not outperform the modified 
MobileNetV1 in classifying performance and the complexity 
model was not smaller than the modified MobileNetV2 model. 
The proposed considered has comparable performances and is 
suitable to be implemented into mobile applications due to its 
latency and accuracy in classifying obese thermograms. 

B. Mobile Application Deployment Results 

The mobile application for obesity early diagnosis was 
constructed by embedding the proposed CNN model into the 
thermal camera smartphone: CAT S62 Pro. The mobile 
application user interface is shown in Fig. 5. The application 
started with a home page with 2 main buttons, as shown in Fig. 
5 (a). The user could press the capture button to redirect the 
user to the thermal camera provided by the mobile devices, as 
shown in Fig. 5 (b), or could press the gallery button to choose 
the thermograms that need to be diagnosed, as shown in Fig. 5 
(c). The detection results are shown in Fig. 5 (d) and Fig. 5 (e). 
The results did not only display the detection conclusion 
between “obese” and “normal”. Therefore, the application also 
showed the obese and normal prediction values from embedded 
CNN models. 

IV. CONCLUSION 

In this study, we built a classifier model by modifying the 
pre-trained CNN model through transfer learning to classify 
obese thermograms into obese and normal binary classes. We 
built the proposed CNN model based on the MobileNetV2 
model by adding additional fully connected layers on the top 
layer architecture. The proposed model achieved the highest 
classification performance accuracy of 87.50%, specificity of 
100 %, and sensitivity of 75 %. The proposed model 
demonstrated an optimal fit learning with 2.5 million 
parameters, a computation cost of 0.613 GFLOPs, and a size of 
9.8 MB. Then we considered the proposed model a lightweight 
CNN model, which has a balanced and comparable tradeoff 
between classification performances and complexity size. Then 
we embedded the proposed CNN Model as a mobile 
application for the thermal camera smartphone: CAT S62 Pro. 
By implementing it on stand-alone mobile devices, the benefits 
of the applications can be more easily used by common people 
to make early obesity diagnoses. In future works, the mobile 
application accuracy could be improved by adding 

segmentation procedures and increasing the output classes into 
3 classes: normal, overweight, and obese. 
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